Numerical simulation of long-period grating sensors (LPGS) transmission spectrum behavior under strain and temperature effects

Author:

Eid Mahmoud M.A.,Rashed Ahmed Nabih Zaki

Abstract

Purpose The purpose of this study aims to simulate the long-period fiber grating sensor pulse peak position against the transmission range. The long-period fiber grating sensor pulse peak position against the transmission range is simulated clearly where the pulse peak value at zero position is 0.972655 with the ripple factor of unity. It is demonstrated that the long-period fiber grating sensor bandwidth can be estimated to be 50 µm. Wavelength shift of the long-period grating sensor (LPGS) is reported against grating wavelength, applied temperatures and applied micro strain. Design/methodology/approach This work has reported the numerical simulation of LPGS transmission spectrum behavior characteristics under the strain and temperature effects by using OptiGrating simulation software. The sensor fabrication material is silica-doped germanium. The transmittivity/reflectivity and input spectrum pulse intensity of long-period Bragg sensor variations are simulated against the grating wavelength variations. Input/output pulse intensity of LPGS variations is simulated against the timespan variations with the Gaussian input pulse from 100 to 500 km link length. Findings Temperature variation and strain variation of the LPGS are outlined against both applied temperatures and micro-strain variations at the central grating wavelength of 1,550 nm. Originality/value It is demonstrated that the long period fiber grating sensor bandwidth can be estimated to be 50 µm. Wavelength shift of the long period grating sensor is reported against both grating wavelength, applied temperatures and applied micro strain. Temperature variation and strain variation of the long period grating sensor are outlined against both applied temperatures and micro strain variations at the central grating wavelength of 1550 nm.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Reference49 articles.

1. Temperature effects on characteristics and performance of near-infrared wide bandwidth for different avalanche photodiodes structures;Results in Physics,2019

2. Continuously tunable single mode fiber laser;Optics Letters,1992

3. Temperature-insensitive 2-D pendulum clinometer using two fiber bragg gratings;IEEE Photonics Technology Letters,2010

4. Design and development of long-period grating sensors for temperature monitoring;Sadhana Journal,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3