Tribological properties of trimethylolpropane oleate synthesized through esterification reaction with nano-MoS2 catalysts of different shapes

Author:

Li Zhixiang,Han Shuo,Wang Lei,Hu Kunhong

Abstract

Purpose This study aims to investigate the catalytic performance and tribological properties of MoS2 powder. Design/methodology/approach In this work, the authors attempted to use MoS2 nanoparticles (nano-MoS2) as a catalyst to synthesize trimethylolpropane oleate (TMPTO) by esterification of trimethylolpropane and oleic acid. The small amount of highly dispersed nano-MoS2 catalyst remaining in TMPTO needed not to be separated and could be used as a lubricant modifier directly to achieve the purpose of improving the lubricity performance of TMPTO. Findings The results demonstrated that nano-MoS2 had good catalytic esterification ability and achieved in situ dispersion of about 0.191% nano-MoS2 in TMPTO while catalyzing the synthesis of base oil. After high-speed centrifugal sedimentation treatment, the product TMPTO still retained about 0.008% of nano-MoS2. The above-synthesized TMPTO has significantly better lubricity performance than commercially available TMPTO, in which the friction coefficient and wear rate could be reduced by 75%. Originality/value The results of this study provide an idea for the design of catalysts for ester oil synthesis.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3