Abstract
Purpose
With regard to product variety and cost competition, just-in-time (JIT) part-supply has become a critical issue in automobile assembly lines (AALs). This paper aims to investigate a multiple server scheduling problem (MSSP) encountered in the JIT part-supply process of AALs. Parts are stored in boxes and allotted from the JIT-supermarket to consumptive stations with a multiple server system. The schedule is to dispatch and sequence material boxes on each server for minimizing line-side inventory levels.
Design/methodology/approach
A mixed integer linear programming (MILP) model is established to formulate the proposed MSSP to pave the way for CPLEX procedure. Considering the high complexity of MSSP, a hybrid ant colony optimization (HACO) approach is developed by integrating basic ant colony optimization (ACO) with local optimizers that comprise of a fast local search and a tailored breadth-first tree search method.
Findings
Both CPLEX and HACO approach are capable of solving small-scale instances to optimality within reasonable computation time. The proposed HACO has been well enhanced with the embedded fast local search and tailored breadth-first tree search, and it performs robustly in a statistically significant manner when applied to real-world scale instances.
Originality/value
No stock-outs constraints and weighted line-side inventory level are considered in this paper, and the MSSP is solved satisfactorily to facilitate an efficient JIT part-supply of the AAL. In terms of the algorithm design, a tree search-based local optimizer is embedded into ACO to combine the mechanisms of ACO and problem-specific optimization.
Subject
Industrial and Manufacturing Engineering,Control and Systems Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献