Simulation of effect of counterface roughness on the friction transfer and wear of PTFE sliding against steel

Author:

Xie Ting,Lai Junjie,Yang Huaping

Abstract

Purpose This paper aims to simulate the effect of counterface roughness on the friction transfer and wear of the polymer material sliding against steel. Design/methodology/approach The dynamic process of friction transfer and wear of polytetrafluoroethylene (PTFE) sliding against steel 45 was simulated by the software of particle flow code in two dimensions and a discrete element method. The effect of the counterface roughness was considered in the simulation. The definitions of the transferred particle and worn particle were given. Findings The simulation results showed that a transferred particle layer was formed on the surface of steel 45 during friction. The wear rate of PTFE can be effectively reduced by the formation of the transferred particle layer. The formation and stability of this particle layer is certainly affected by the counterface roughness (Rz). In this paper, the transferred particle numbers increased with Rz increase. And so did the worn particle numbers. However, there was little effect of Rz on the wear rate of PTFE. Originality/value The dynamic process of the friction transfer and wear of the PTFE/ steel 45 friction pair was reproduced at the micro-level. Then, the transfer and wear were quantitatively exhibited. The relations between the transfer or wear and counterface roughness was simulated and discussed. It will be meaningful for the optimization and effective control of friction and wear of polymer/metal sliding system.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Reference26 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3