Optimum investor portfolio allocation in new age digital assets

Author:

Aggarwal Vaibhav

Abstract

Purpose Bitcoin and Ethereum, although the most prominent cryptocurrencies, carry a high ticker price. Many investors carry an inherent bias against high price ticker securities and prefer only low prices securities. This paper aims to help market players generate adequate risk-adjusted returns by investing in only lower-priced cryptocurrencies. Design/methodology/approach The pairwise bivariate BEKK-GARCH (1,1) model is deployed to capture the short- and long-term volatility linkages between Litecoin, Stellar and Ripple from August 2015 to June 2020. Findings Litecoin is the most influential volatility sender in the basket of these three cryptocurrencies. The portfolio weights indicate that investors can create an optimized two asset portfolio with the lowest exposure to Stellar with Litecoin and Ripple. Market players with a long position in Ripple can have the cheapest hedge by shorting Stellar. Originality/value This study adds to the scant literature on the association between emerging cryptocurrencies and finding optimum portfolio weight and hedge ratios.

Publisher

Emerald

Subject

Management of Technology and Innovation,General Engineering

Reference46 articles.

1. Volatility persistence in cryptocurrency markets under structural breaks;International Review of Economics and Finance,2020

2. Volatility spillover and shock transmission of Ethereum with Ripple, Stellar and Monero;The Emperical Economics Letters,2020

3. Volatility spillover from institutional equity investments to Indian volatility index;International Journal of Management Concepts and Philosophy,2020

4. Volatility spillover impact of FII and MF net equity flows on the Indian sectoral stock indices: Recent evidence using BEKK-GARCH;International Journal of Indian Culture and Business Management,2021

5. Do stock markets witness instantaneous reactions to changes in dividend tax laws?: evidence from India;International Journal of Indian Culture and Business Management,2019

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3