Design and simulation of electro-thermal compliant MEMS logic gates

Author:

P. Pandiyan,G. Uma,M. Umapathy

Abstract

PurposeThe purpose of this paper is to design an out-of-plane micro electro-thermal-compliant actuator based logic gates which work analogously to complementary metal oxide semiconductor (CMOS) based logic gates. The proposed logic gates used a single-bit mechanical micro ETC actuator per logic instead of using 6-14 individual transistors as in CMOS. Design/methodology/approachA complete analytical modelling is performed on a single ETC vertical actuator, and a relation between the applied voltage and the out-of-plane deflection is derived. Its coupled electro-thermo-mechanical analysis is carried out using micro electro mechanical system (MEMS) CAD tool CoventorWare to illustrate its performance. FindingsThis paper reports analytical and numerical simulation of basic MEMS ETC actuator-based logic gates. The proposed logic gate operates on 5 V, which suits well with conventional CMOS logic, which in turn reduces the power consumption of the device. Originality/valueThe proposed logic gates uses a single-bit MEMS ETC actuator per logic instead of using more transistors as in CMOS. The unique feature of this proposed logic gates is that the basic mechanical ETC actuator is customized in its structure to function as specific logic gates depending upon the given inputs.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Reference35 articles.

1. Suspended-gate MOSFET: bringing new MEMS functionality into solid-state MOS transistor,2005

2. Design and analysis of multilayer electrothermal actuator for MEMS;Proceedings of IEEE 2nd International Conference on Mechanical and Electronics Engineering,2010

3. Comparison of pull-in voltages in MEMS using 3D FEM and analytical approaches;COMPEL – The International Journal for Computation and Mathematics in Electrical and Electronic Engineering,2010

4. Energy reversible Si-based NEMS switch for nonvolatile logic systems,2013

5. Development of MEMS based universal gate for signal processing circuit in low frequency sensor applications,2010

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3