Programmable omega-based complex medium for beam steering applications

Author:

Christodoulou Michail G.,Lalas Antonios X.,Kantartzis Nikolaos V.,Tsiboukis Theodoros D.

Abstract

Purpose Metamaterials have been utilised in several exciting configurations such as tuneable reflectors, reconfigurable absorbers, and programmable modulators, triggering intense research efforts. Among them, the ability to steer the radiation pattern of a single antenna component by employing a metamaterial-based superstrate is considered crucial for the development of advanced beam forming applications. The purpose of this paper is to introduce an adjustable omega-inspired metamaterial module to facilitate the design of beam steering implementations, involving beam forming capabilities, as well. Design/methodology/approach A variable capacitive diode is properly positioned at the novel omega element, hence advancing the controllability of its electromagnetic performance and circumventing the requirement of extra bias networks. When an array of these particles is placed in front of an antenna, several negative refractive index profiles can be realised, allowing the manipulation of the beam direction. Furthermore, a pyramidal horn antenna, loaded with this complex medium superstrate, is thoroughly investigated in terms of programmable beam steering and beam forming attributes. Several numerical data derived via the finite element method unveil the merits of the featured configuration. Findings The proposed structure allows programmability of the electromagnetic behaviour, but also circumvents the necessity of complicated bias networks, while minimising interference. The numerical assessment of a standard gain pyramidal horn antenna, associated to the featured metamaterial superstrate, sufficiently proves the controllable beam steering and beam forming attributes. Several parametric studies clarify the principal characteristics of the proposed setup, facilitating the design of high-end systems. Originality/value Development of tuneable metamaterial, which utilises variable capacitive diodes to enable controllability. Incorporation of reconfigurable metamaterials into antenna technology. Design of a pyramidal horn antenna, loaded with a complex medium superstrate exhibiting programmable beam steering and beam forming attributes. The proposed device circumvents the necessity of complicated bias networks, while minimising interference.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Reference18 articles.

1. Experimental verification of metamaterial loaded small patch antennas;COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering,2013

2. Controllable left-handed metamaterial and its application to a steerable antenna;Applied Physics Letters,2006

3. Robust method to retrieve the constitutive effective parameters of metamaterials;Physical Review E,2004

4. The role of geometry of inclusions in forming metamaterials with negative permittivity and permeability,2002

5. Design and characterization of a tunable DNG metamaterial superstrate for small beam steering antennas;Applied Physics A,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3