Unified and non-ideal switch model for analysis of switching circuits

Author:

Pekdemir Alperen,Yildiz Ali Bekir

Abstract

Purpose This paper aims to propose a new unified and non-ideal switch model for analysis of switching circuits. Design/methodology/approach The model has a single unified structure that includes all possible states (on, off) of the switches. The analysis with the proposed switch model requires only one topology and uses the single system equation regardless of states of switches. Moreover, to improve accuracy, the model contains the on-state resistance and capacitive effect of switches. The system equations and the states of switches are updated by control variables, used in the model. Findings There are no restrictions on circuit topology and switch connections. Switches can be internally and externally controlled. The non-ideal nature of the model allows the switch to be modeled more realistically and eliminates the drawbacks of the ideal switch concept. After modeling with the proposed switch model, a linear circuit is obtained. Two examples related to switching circuits are included into the study. The results confirm the accuracy of the model. Originality/value This paper contributes a different switch model for analysis of switching converters to the literature. The main advantage of the model is that it has a unified and non-ideal property. With the proposed switch model, the transient events, like voltage spikes and high-frequency noises, caused by inductor and capacitor elements at switching instants can be observed properly.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Reference21 articles.

1. Comparison and design of flyback converter using an ideal switch and a MOSFET switch,2018

2. Nonlinear modeling and voltage-mode control of DC-DC boost converter for CCM,2018

3. A non-ideal SEPIC DCM modeling for led lighting applications,2018

4. Computer simulation of continuous-time and switched circuits: limitations of SPICE-family programs and pending issues,2007

5. Performance comparison of non-ideal and ideal models of DC-DC buck converter,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3