Author:
Frljić Stjepan,Trkulja Bojan,Drandić Ana
Abstract
Purpose
The purpose of this paper is to present a methodology for calculating eddy current losses in the core of a single-phase power voltage transformer, which, unlike a standard power transformer, has an open-type core (I-type core). In those apparatus, reduction of core losses is achieved by using a multipart open-type core that is created by merging a larger number of leaner cores.
Design/methodology/approach
3D FEM approach for calculation of eddy current losses in open-type cores based on a weak AλA formulation is presented. Method in which redundant degrees of freedom are eliminated is shown. This enables faster convergence of the simulation. The results are benchmarked using simulations with standard AVA formulation.
Findings
Results using weak AλA formulation with elimination of redundant degrees of freedom are in agreement with both simulation using only weak AλA formulation and with simulation based on AVA formulation.
Research limitations/implications
The presented methodology is valid in linear cases, whereas the nonlinear case will be part of future work.
Practical implications
Presented procedure can be used for the optimization when designing the open-type core of apparatus like power voltage transformers.
Originality/value
The presented method is specifically adapted for calculating eddy currents in the open-type core. The method is based on a weak formulation for the magnetic vector potential A and the current vector potential λ, incorporating numerical homogenization and a straightforward elimination of redundant degrees of freedom, resulting in faster convergence of the simulation.
Subject
Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献