Author:
Singh Sidhu Ripendeep,Singh Gurmeet,Gill Harjot Singh
Abstract
Purpose
This empirical study aims to investigate the erosion wear performance of two different 3D-printed materials (acrylonitrile butadiene styrene [ABS] and polylactic acid [PLA]) with various micro textures. The two different textures (prism and square) were created over the surfaces of both materials by using the 3D-printed technique.
Design/methodology/approach
The erosion experiments on both materials were performed by using Ducom Erosion Jet Tester. Erosion tests were performed at four different impacting velocities (15, 30, 45 and 60 m/s) with the four different particle sizes (17, 39, 63 97 µm) at the impact angles (30°–90°) for the time duration of 5, 10, 15 and 20 min. The two different textures prism and cone were used for performing the erosion experiments. Taguchi’s orthogonal L16 (mixed level) was used to reduce the number of experiments and to determine the impact of these parameters on erosion wear performance of both 3D-printed materials.
Findings
The PLA with cone texture was found to be best (against erosion) than the ABS cone and prism textures due to their high hardness (68 HV). Also, the average signal to noise (S/N) ratio for PLA and ABS was measured as 56.4 and 44.4 dB, respectively. As the value of the S/N ratio is inversely proportional to the erosion rate, the PLA has the least erosion rate as compared to the ABS. The sequence of erosion wear influencing parameters for both materials was in the following order: velocity > erodent size > texture > impact angle > time interval.
Originality/value
Both PLA and ABS with different micro textures for erosion testing were studied with Taguchi’s optimization method, and the erosion mechanisms are well analyzed by using scanning electron microscopy and Image J techniques.
Subject
Materials Chemistry,Surfaces, Coatings and Films
Reference21 articles.
1. Experimental investigation on the effect of water-silica slurry impacts on 3D-printed polylactic acid;Tribology International,2020
2. Evaluation of the anticorrosive performance of epoxy coatings containing new core/shell pigments;Pigment & Resin Technology,2018
3. Study on erosion wear of steels under varying abrasive jet;Materials Today: Proceedings,2018
4. Nanostructure control in 3D printed materials;Advanced Materials,2022
5. A level set methodology for predicting the effect of mask wear on surface evolution of features in abrasive jet micro-machining;Journal of Micromechanics and Microengineering,2012
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献