Characterization of sintered hydroxyapatite samples produced by 3D printing

Author:

Pires I.,Gouveia B.,Rodrigues J.,Fonte R.

Abstract

Purpose – The purpose of this study is to characterize sintered hydroxyapatite (HA) samples produced by three-dimensional printing (3DP). This study is part of a project concerned with the fabrication of calcium phosphates implants by 3DP. However, before considering a more complex structure, like scaffolds or implants, a thorough knowledge of the role played by the sintering temperature on physical and mechanical the properties of porous HA is necessary. Design/methodology/approach – The characteristics of sintered HA samples have been analyzed by means of x-ray diffraction, scanning electron microscope (SEM) and uniaxial compression tests. The 3DP parameters used to produce the HA samples were those who led to higher accuracy and mechanical stability. Findings – Sintering temperature and powder morphology are critical factors influencing densification behavior, porosity, phase stability, mechanical strength and tangent modulus of the HA samples produced by 3DP. This study allowed us to conclude about the 3DP parameters to be used to produce porous HA specimens with the required integrity and dimensional accuracy, and the optimal post-processing sintering temperature which led to the best results in terms of porosity, microstructure, phase stability of HA and mechanical properties. Originality/value – This paper provides a method to evaluate the manufacturability of calcium phosphate models produced by 3DP.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3