Optimization of dimensional accuracy and surface roughness in m-SLA using response surface methodology

Author:

Singh Shamsher,Jain Abhas,Chaudhary Prachi,Gupta Rishabh,Mali Harlal Singh

Abstract

Purpose This paper aims to investigate the dimensional accuracy and surface roughness of printed masked stereolithography (m-SLA) parts. The fabricated specimens of photosensitive polymer resin have complex shapes and various features. The influence of four process parameters of m-SLA, including layer height, exposure time, light-off delay and print orientation, is studied on response characteristics. Design/methodology/approach The Box–Behnken design of response surface methodology is used to examine the effect of process parameters on the shrinkage of various geometrical dimensions like diameter, length, width, and height of different features in a complex shape. Additionally, a multi-response optimization has been carried out using the desirability function to minimize the surface roughness and printing time and maximize the dimensional accuracy. Findings The layer height and print orientation influence the surface roughness of parts. An increase in layer height results in increased surface roughness, and the orientation parallel to the z-axis of the machine gives the highest surface roughness. The dimensional accuracy of m-SLA parts is influenced by layer height, exposure time, and print orientation. Although not significant in dimensional accuracy and surface roughness, the light-off delay can affect printing time apart from other parameters like layer height and print orientation. Originality/value The effect of layer height and print orientation on dimensional accuracy, printing time, and surface roughness is investigated by researchers using simple shapes in other vat photopolymerization techniques. The present work is focused on studying the effect of these parameters and additional parameters like light-off delay in complicated geometrical parts in m-SLA.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference29 articles.

1. Influence of manufacturing parameters on the mechanical properties of projection stereolithography– manufactured specimens;The International Journal of Advanced Manufacturing Technology,2020

2. Surface quality of 3D-printed models as a function of various printing parameters;Materials,2019

3. Microstereophotolithography using a liquid crystal display as dynamic mask-generator;Microsystem Technologies,1997

4. The printing parameters effects on the dimensional accuracy of the parts made of photosensitive resin;Macromolecular Symposia,2021

5. Cheap, versatile, and turnkey fabrication of microfluidic master molds using consumer-grade LCD stereolithography 3D printing;The International Journal of Advanced Manufacturing Technology,2021

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3