Abstract
PurposeThe main purpose is to construct the mapping relationship between garment flat and pattern. Particle swarm optimization–least-squares support vector machine (PSO-LSSVM), the data-driven model, is proposed for predicting the pattern design dimensions based on small sample sizes by digitizing the experience of the patternmakers.Design/methodology/approachFor this purpose, the sleeve components were automatically localized and segmented from the garment flat by the Mask R-CNN. The sleeve flat measurements were extracted by the Douglas–Peucker algorithm. Then, the PSO algorithm was used to optimize the LSSVM parameters. PSO-LSSVM was trained by utilizing the experience of patternmakers.FindingsThe experimental results demonstrated that the PSO-LSSVM model can effectively improve the generation ability and prediction accuracy in pattern design dimensions, even with small sample sizes. The mean square error could reach 1.057 ± 0.06. The fluctuation range of absolute error was smaller than the others such as pure LSSVM, backpropagation and radial basis function prediction models.Originality/valueBy constructing the mapping relationship between sleeve flat and pattern, the problems of the garment flat objective recognition and pattern design dimensions accurate prediction were solved. Meanwhile, the proposed method overcomes the problem that the parameters are determined by PSO rather than empirically. This framework could be extended to other garment components.
Subject
Polymers and Plastics,General Business, Management and Accounting,Materials Science (miscellaneous),Business, Management and Accounting (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献