A numerical investigation of heat transfer in a smooth bend part of a U-duct

Author:

Salameh Tareq,Sunden Bengt

Abstract

Purpose – The aim of this paper is to study two-dimensional numerical simulations of the flow and temperature fields inside the bend (turn) part of a U-duct. Design/methodology/approach – Several turbulence models based on two and five equations were used to solve the momentum and energy equations inside the bend (turn) part of the U-duct. For two-equation models, both the renormalization group and realizable k-ɛ turbulence models were implemented. The five-equation model used is a Reynolds stress model with different wall boundary conditions. Standard, non-equilibrium and enhanced wall functions were used in parallel with the two- and five-equation models to treat the turbulent flow near the duct walls. Findings – Several turbulence models were used to simulate the flow and temperature fields along the bend part of a U-duct with different inlet and thermal boundary conditions. The numerical results indicate that the renormalization and realizable k-ɛ turbulence models with standard wall function treatment gave the best results when compared with experimental data obtained for similar conditions. Research limitations/implications – For heat transfer analysis, two different thermal boundary conditions, i.e. constant wall temperature and constant heat flux at the wall are implemented. The results are calculated for Reynolds number equal 20,000. Practical implications – The results can be used in designing heat exchangers, piping and duct systems, and internal passage cooling of gas turbine blades. Originality/value – The numerical results obtained here concentrate on the detailed investigation of flow and temperature field at the outer wall of the bend part. Different boundary conditions at the inlet and the outer bend walls of the U-duct were applied to study how these boundary conditions affect the flow and temperature fields.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental and numerical analysis of heat transfer enhancement inside concentric counter flow tube heat exchanger using different nanofluids;International Journal of Thermofluids;2023-11

2. A Smart Ambulance Escort Drone;2023 Advances in Science and Engineering Technology International Conferences (ASET);2023-02-20

3. Customers Dependent Demand Response in Energy Hubs with IoT Perforation;2023 Advances in Science and Engineering Technology International Conferences (ASET);2023-02-20

4. PV Penetration Impact Study for Future Micro-Grid in Jordan;2023 Advances in Science and Engineering Technology International Conferences (ASET);2023-02-20

5. DRONA: A Novel Design of a Drone for Search and Rescue Operations;2023 Advances in Science and Engineering Technology International Conferences (ASET);2023-02-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3