Synthesis and field dependent shear stress evaluation of stable MR fluid for brake application

Author:

K.P. Lijesh,Kumar Deepak,Hirani Harish

Abstract

Purpose The purpose of this paper is to report on the development of magnetorheological (MR) fluids, having high on-state shear stress/viscosity, low off-state shear stress/viscosity, good redispersibility and stable suspension of carbonyl iron particles, using tetramethyl ammonium hydroxide (TAH) and oleic acid. Design/methodology/approach MR fluids for use in brakes are synthesized using different weight percentages of silicone oil, TAH, oleic acid and iron particles. The effects of TAH and oleic acid are studied. Shear stress is measured as a function of magnetic field on a magneto-rheometer. The images of MR particles settling with time are presented. The test set-up used to evaluate the performance of the MR fluids synthesized for brake application is detailed. Finally, a significant improvement in the MR performance of brakes is reported. Findings The MR fluid having 0.25 Wt.% oleic acid showed low off-state viscosity/shear stress and high on-state viscosity/shear stress. A higher weight percentage of TAH in the MR fluid further reduced the low off-shear stress and increased the high on-state shear stress with better stability. Originality/value Improvement of MR brake performance by adding surfactants like TAH and oleic acid has been the subject matter of several studies in the past, but these studies used a fixed percentage of surfactants in MR fluids. In the present work, the optimum percentage of TAH and oleic acid for an improved braking performance is determined by varying their content in the MR fluid, which has not been reported in any other work thus far.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Reference9 articles.

1. A review on the magnetorheological fluid preparation and stabilization;Journal of Magnetism and Magnetic Materials,2015

2. Optimization and design of disk-type MR brakes;International Journal of Automotive Technology,2011

3. What makes a good MR fluid?;Journal of Intelligent Material Systems and Structures,2002

4. Properties and application of magnetorheological fluids;Journal of Achievements in Materials and Manufacturing Engineering,2006

5. Krantz, J. (2011), “System and method for removing brake dust and other pollutants”, Patent application US 13/109, 891.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3