Author:
Al-Huseini Amal,Kasi Ramesh,Shafaamri Ammar,Wonnie Ma Iling Aema,Subramaniam Ramesh
Abstract
Purpose
This paper aims to study the corrosion performance and physical properties of hybrid paint systems based on zinc-rich primer (ZRP) and to determine the optimum modification approach that guarantees the most overall performance enhancement for the developed coating films that have been fabricated based on the usage of ZRP.
Design/methodology/approach
Four different approaches were applied to enhance the corrosion protection performance and the physical properties of ZRP-based paint systems, namely, incorporation with TiO2 pigment, introducing SiO2 nanoparticles, usage of polyamide curing agent and application of epoxy base coating as a second layer. The physico-mechanical properties were examined using pull-off test, glossiness test, pencil hardness test and cross-cut adhesion tape test. Moreover, the contact angle measurement was used to study the wettability of the developed coated surfaces and the corrosion protection performances were evaluated by using electrochemical impedance spectroscopy and salt spray test.
Findings
The obtained results revealed the ability of a certain approach to enhance the physical and corrosion protection properties of the ZRP paint system. Moreover, developing an intact hydrophobic nanocomposite paint system based on the usage of ZRP as the host matrix and SiO2 nanoparticles as the reinforcing agent was confirmed without altering the cathodic protection mechanism or the other desired characteristics of ZRP paint system.
Originality/value
The innovation of this work can be clearly observed by the ability to enhance the physical and corrosion protection properties of ZRP with four different approaches.
Subject
Materials Chemistry,Surfaces, Coatings and Films
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献