Author:
Chen Cheng‐Hsien,Tsai Te‐Hui,Yang Ding‐Wen,Kang Yuan,Chang Yeon‐Pun
Abstract
PurposeThe purpose of this paper is to study the influences of both the number and locations of entry holes on the static and dynamic characteristics of a rigid rotor supported by two double‐rows, inherently compensated aerostatic bearings.Design/methodology/approachThe air is assumed to be perfect gas undergoing the adiabatic process and passing through entry holes into the bearing clearance. Air film in the clearance is governed by Reynolds equation including the coupled effects of wedge due to rotor rotation and squeezed film due to rotor oscillation.FindingsThe method is used to analyze Reynolds equation, which is then solved by the finite difference method and numerical integration to yield static and dynamic characteristics of air film. The equation of motion of the rotor‐bearing system is obtained by using the perturbation method and the eigensolution method is used to determine the stability threshold and critical whirl ratio.Originality/valueThe paper considers the eccentricity, rotor speed, and restriction parameter in the analysis of the whirl instability of the rotor‐aerostatic bearing system for the comparisons between various designs in the number and locations of entry holes of aerostatic bearings.
Subject
Surfaces, Coatings and Films,General Energy,Mechanical Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献