Detecting and measuring flaws using electric potential techniques

Author:

Merah Neçar

Abstract

The electric potential techniques are of two types: the direct current potential drop method (DCPD) and the alternating current potential drop method (ACPD). While the latter can be used mainly to detect surface defects, the first is more appropriate for detecting the initiation of cracks and monitoring their growth. One of the advantages of the ACPD is that it can be easily employed as a non‐destructive inspection tool. The DCPD has been used mainly in the laboratory environments under various conditions of loading including high gross inelastic deformations where subsurface flaws are present. Both these techniques have high accuracy and can be used as tools to detect defects in manufactured parts such as flaws in welds. Their findings are very useful in preventive maintenance; the inspectors and engineers use them to take decisions for scheduling maintenance. The present paper presents a review of the evolution in the design of ACPD and DCPD systems, with their advantages, disadvantages and fields of application. It is shown that ACPD and DCPD have comparable sensitivity and are widely used for surface crack measurement. The relatively new AC field measurement technique will be described. Its performance will be compared to that of ACPD. The use of DCPD in applications involving high temperature and gross inelastic strains will be stressed. The results obtained in low cycle fatigue conditions show that by including a special reference potential ratio, the DCPD yields a good estimation of the average surface and subsurface crack lengths. The method also allows an accurate detection of crack initiation in these conditions.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Safety, Risk, Reliability and Quality

Reference38 articles.

1. Barnett, W.J. and Troiono, A.R. (1957), “Crack propagation in the hydrogen‐induced brittle fracture of steel”, Journal of Metals, Vol. 9, pp. 486‐94.

2. Baudin, G. and Policella, H. (1978), “A new method of electric measurement of crack length”, La Recherche Aérospatiale, Vol. 4, pp. 195‐203.

3. Beevers, C.J. (1980), The Measurement of Crack Length and Shape during Fracture and Fatigue, EMAS Ltd, Warley.

4. Beevers, C.J. (Ed.) (1982), Advances in Crack Length Measurement, EMAS Ltd, Warley.

5. Cosatanza V. and Mohaupt, U.H. (1990), “A local field potential drop crack measurement system for seizing and characterizing cracks”, Abstracts and Summaries of Canadian Fracture Conference, pp. 350‐67.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3