Vision and laser fused SLAM in indoor environments with multi-robot system

Author:

Chen Haoyao,Huang Hailin,Qin Ye,Li Yanjie,Liu Yunhui

Abstract

Purpose Multi-robot laser-based simultaneous localization and mapping (SLAM) in large-scale environments is an essential but challenging issue in mobile robotics, especially in situations wherein no prior knowledge is available between robots. Moreover, the cumulative errors of every individual robot exert a serious negative effect on loop detection and map fusion. To address these problems, this paper aims to propose an efficient approach that combines laser and vision measurements. Design/methodology/approach A multi-robot visual laser-SLAM is developed to realize robust and efficient SLAM in large-scale environments; both vision and laser loop detections are integrated to detect robust loops. A method based on oriented brief (ORB) feature detection and bag of words (BoW) is developed, to ensure the robustness and computational effectiveness of the multi-robot SLAM system. A robust and efficient graph fusion algorithm is proposed to merge pose graphs from different robots. Findings The proposed method can detect loops more quickly and accurately than the laser-only SLAM, and it can fuse the submaps of each single robot to promote the efficiency, accuracy and robustness of the system. Originality/value Compared with the state of art of multi-robot SLAM approaches, the paper proposed a novel and more sophisticated approach. The vision-based and laser-based loops are integrated to realize a robust loop detection. The ORB features and BoW technologies are further utilized to gain real-time performance. Finally, random sample consensus and least-square methodologies are used to remove the outlier loops among robots.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Control and Systems Engineering

Reference37 articles.

1. Distributed consensus on robot networks for dynamically merging feature-based maps;IEEE Transactions on Robotics,2012

2. Localization for multirobot formations in indoor environment;IEEE/ASME Transactions on Mechatronics,2010

3. Square root SAM: simultaneous localization and mapping via square root information smoothing;International Journal of Robotics Research,2006

4. A framework for multi-robot pose graph SLAM,2016

5. An evaluation of the RGB-D SLAM system,2012

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3