Platinum Group Element Enrichment of Natural Quenched Sulfide Solid Solutions, the Norilsk 1 Deposit, Russia

Author:

Brovchenko Valeriya D.1,Sluzhenikin Sergey F.1,Kovalchuk Elena V.1,Kovrigina Sofia V.1,Abramova Vera D.1,Yudovskaya Marina A.12

Affiliation:

1. Institute of Geology of Ore Deposits Mineralogy, Petrography, and Geochemistry, Russian Academy of Sciences, Staromonetny per. 35, Moscow 119017, Russia

2. Centre of Excellence for Integrated Mineral and Energy Resource Analysis (CIMERA), School of Geosciences, University of Witwatersrand, Wits 2050, South Africa

Abstract

Abstract The deepest terminations of the Mount Rudnaya subvertical massive sulfide offshoots of the Norilsk 1 orebody are composed of exceptionally fine grained sulfides that are believed to be natural quenched sulfide solid solutions. Copper-rich intermediate solid solution (ISS) and Fe-rich monosulfide solid solution (MSS) form an equigranular and lamellar matrix hosting MSS- and ISS-dominant globules. The nonstoichiometric chemical compositions of the solid solutions plot within their high-temperature fields known from experiments. MSS contains 19 to 35 wt % Ni, 0.09 to 0.45 wt % Co, and up to 0.6 wt % Cu and is heterogeneously enriched in Rh (up to 32 ppm), Ir (up to 0.6 ppm), Pt (up to 65 ppm), and Pd (up to 168 ppm). ISS occurs as the lamellar intergrowths of the chalcopyrite (Ccpss) and cubanite (Cubss) solid solutions, which bear up to 4.74 wt % Ni and 0.2 wt % Co and are heterogeneously enriched in Zn, Ag, and In. The assemblage of platinum group minerals (PGMs) is hosted mostly in the ISS and is dominated by Pt-Fe alloys and minerals of the rustenburgite-atokite series, like the set of PGMs at the Norilsk 1 deposit. Similar Pt-Pd-Sn compounds in the laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) spectra of profiles through MSS and ISS are interpreted to be trapped microinclusions. The pentlandite contains up to 0.13 wt % Pt, up to 4.62 wt % Pd, <0.53 wt % Co, and <0.4 wt % Cu according to electron microprobe analysis. LA-ICP-MS data and mapping show that Pd content in the pentlandite increases toward contacts with ISS and decreases toward contacts with MSS, supporting a reaction origin of pentlandite. The wide variations of the concentrations of major and trace elements in the solid solutions, as well as the coexistence of Pd-poor (a few ppm Pd) and Pd-rich (over 4.62 wt % Pd) pentlandite within a single sample, seem to characterize the different generations of the MSS to MSS-ISS globules, antecrysts, and phenocrysts with the distinct histories of enrichment due to exchange with fractionated Cu-platinum group element-rich residue. The directional distribution of Pd of high-temperature primary magmatic origin is preserved due to rapid quenching of the sulfides from ~650°C.

Publisher

Society of Economic Geologists

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3