The Watershed Tungsten Deposit, Northeast Queensland, Australia: Permian Metamorphic Tungsten Mineralization Overprinting Carboniferous Magmatic Tungsten

Author:

Poblete Jaime A.1,Dirks Paul H.G.M.1,Chang Zhaoshan12,Huizenga Jan Marten13,Griessmann Martin4,Hall Chris5

Affiliation:

1. Economic Geology Research Centre, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia

2. Colorado School of Mines, Department of Geology and Geological Engineering, 1516 Illinois St., Golden, Colorado 80401

3. Department of Geology, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa

4. Vital Metals Ltd., Suite 1, 91 Hay Street, Subiaco, Western Australia 6008, Australia

5. Argon Geochronology Laboratory, Department of Earth and Environmental Sciences, University of Michigan, 2534 C.C. Little Building, 1100 N. University Ave., Ann Arbor, Michigan 48109-1005

Abstract

Abstract The Watershed tungsten deposit (49.2 Mt avg 0.14% WO3) lies within the Mossman orogen, which comprises deformed Silurian-Ordovician metasedimentary rocks of the Hodgkinson Formation intruded by Carboniferous-Permian granites of the Kennedy Igneous Association. The Hodgkinson Formation in the Watershed area comprises skarn-altered conglomerate, psammite, and slate units that record four deformation events evolving from ductile, isoclinal, colinear folding with transposition (D1–D3) to brittle ductile shear zones (D4). Multiple felsic to intermediate dikes cut across the metasedimentary rocks at Watershed including the following: (1) Carboniferous, monzonite dikes (zircon U/Pb age of 350 ± 7 Ma) emplaced during D1–2; and (2) Permian granite plutons and dikes (zircon U/Pb ages of 291 ± 6, 277 ± 6, and 274 ± 6 Ma) and diorite (zircon U/Pb age of 281 ± 5 Ma) emplaced during D4. Tungsten mineralization is largely restricted to skarn-altered conglomerate, which preserves a peak metamorphic mineralogy formed during ductile deformation and comprises garnet (Grt40–87 Alm0–35Sps1–25Adr0–16), actinolite, quartz, clinopyroxene (Di36–59Hd39–61Jhn1–5), and titanite. A first mineralization event corresponds to the crystallization of disseminated scheelite in monzonite dikes (pre-D3) and adjacent units, with scheelite grains aligned in the S1–2 fabric and affected by D3 folding. This event enriched the Hodgkinson Formation in tungsten. The bulk of the scheelite mineralization formed during a second event and is concentrated in multistaged, shear-related, quartz-oligoclase-bearing veins and vein halos (muscovite 40Ar-39Ar weighted average age of 276 ± 6 Ma), which were emplaced during D4. The multistage veins developed preferentially in competent, skarn-altered conglomerate units and formed synchronous with four retrograde alteration stages. The retrograde skarn minerals include clinozoisite after garnet, quartz, plagioclase, scheelite, and phlogopite with minor sodium-rich amphibole, which formed during retrograde stages 1 and 2, accompanied by later muscovite, calcite, and chlorite formed during retrograde stage 3. Retrograde stage 4 was a late-tectonic, noneconomic sulfide stage. The principal controls on scheelite mineralization at Watershed were the following: (1) early monzonite dikes enriched in scheelite; (2) D4 shear zones that acted as fluid conduits transporting tungsten from source areas to traps; (3) skarn-altered conglomerate lenses that provide a competent host to facilitate vein formation and a source for calcium to form scheelite; and (4) an extensional depositional environment characterized by vein formation and normal faulting, which provide trapping structures for tungsten-bearing fluids, with decompression being a likely control on scheelite deposition. The coexistence of scheelite with oligoclase in monzonite dikes and veins suggests that tungsten was transported as NaHWO40. Exploration in the area should target Carboniferous monzonite, associated with later syn-D4 shear zones cutting skarn-altered conglomerate.

Publisher

Society of Economic Geologists

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3