Hybrid Nature of the Platinum Group Element Chromite-Rich Rocks of the Norilsk 1 Intrusion: Genetic Constraints from Cr Spinel and Spinel-Hosted Multiphase Inclusions

Author:

Chayka Ivan F.12,Kamenetsky Vadim S.23,Zhitova Liudmila M.14,Izokh Andrey E.14,Tolstykh Nadezhda D.14,Abersteiner Adam35,Lobastov Boris M.6,Yakich Tamara Yu.7

Affiliation:

1. V. S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia

2. Institute of Experimental Mineralogy, Russian Academy of Sciences, Chernogolovka, Russia

3. School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia

4. Novosibirsk State University, Novosibirsk 630090, Russia

5. Institute of Volcanology and Seismology, Far-Eastern Branch of the Russian Academy of Sciences, Petropavlovsk-Kamchatsky 683006, Russia

6. Siberian Federal University, Krasnoyarsk 660041, Russia

7. Tomsk Polytechnic University, Tomsk 634050, Russia

Abstract

AbstractThe Norilsk 1 intrusion (Russia), renowned for its abundance of sulfide ores, contains an upper contact zone, which hosts sulfide-poor and Cr spinel and platinum group element (PGE)-rich discontinuous reefs with significant economic potential. Located within strongly inhomogeneous contact rocks of various compositions, the origin of these reefs is complex and debated. Enrichment in PGEs in these rocks is distributed heterogeneously, occasionally occurring in extremely dense disseminations of Cr spinel, which are unusual for other rocks of the Norilsk 1 intrusion. The compositions of Cr spinel vary significantly between individual samples, even within the same samples across clusters of several Cr spinel grains and single grains. Chromium spinel grains are broadly characterized by low Mg# (3–50 mol %), moderate to extremely high TiO2 content (1–18 wt %), diverse Fe2+/Fe3+ ratios, and elevated V and Zn. Multiphase silicate inclusions hosted by Cr spinel are dominated by orthopyroxene, alkali-feldspar, clinopyroxene, Na phlogopite, high-Al amphibole, chlorite, and albite, along with minor felsic glass, sulfide, apatite, baddeleyite, titanite, calcite, halite, and cordierite. Heating experiments (1,250°C) on the silicate inclusions failed to produce homogeneous glasses but showed evidence of partial melting and reactions with precursor minerals that crystallized new phases. The experimentally obtained glasses are characterized by compositions that strongly differ from any known igneous rock in the Norilsk region, and the assemblage of phases in these inclusions is not supportive of the entrapment of a homogeneous silicate melt. Trace element patterns of the glasses of the experimentally heated inclusions are compositionally distinct from the Norilsk trap basalts, and instead are closer to the sedimentary rocks of the Norilsk region. We suggest that an in situ interaction between the mafic melt and the sedimentary rocks was responsible for Cr spinel mineralization and the formation of the host rocks. The subsequent subsolidus modification of the initial rocks expanded the Cr spinel compositional range and formed muscovite-albite-chlorite assemblages, which replaced the original silicate minerals.

Publisher

Society of Economic Geologists

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3