Background electromagnetic noise characterization: the role of external and internal Earth sources

Author:

Antonio Meloni 1,Cesidio Bianchi 1,Giuliana Mele 1,Paolo Palangio 1

Affiliation:

1. Istituto Nazionale di Geofisica e Vulcanologia, Rome,

Abstract

<p>The Earth is surrounded by the ionosphere and magnetosphere that can roughly be seen schematically as two concentric shells. These two composed and inhomogeneous structured shells around the Earth selectively affect electromagnetic (EM) waves propagation. Both ionosphere and magnetosphere interact also with particles and waves coming from external sources, generating electromagnetic phenomena that in turn might become sources of EM waves. Conversely, EM waves generated inside the ionosphere remain confined at various altitudes in this region, up to a so-called critical frequency limit, depending on frequency, EM waves can escape out of the ionosphere and magnetosphere or get through. The EM waves generated inside the magnetospheric cavity mainly originate as a result of the electrical activity in the atmosphere. It is well known that also man-made sources, now widely spread on Earth, are a fundamental source of EM waves; however, excluding certain frequencies employed in power distribution and communication, man-made noise can be dominant only at local scale, near their source. According to recent studies, EM waves are also generated in the Earth’s lithosphere; these waves were sometimes associated with earthquake activity showing, on the Earth’s surface, intensities that are generally orders of magnitude below the background EM noise. In this review paper, we illustrate EM waves of natural origin and discuss their characterization in order to try discriminate those of lithospheric origin detectable at or near the Earth’s surface.</p>

Publisher

Instituto Nazionale di Geofisica e Vulcanologia, INGV

Subject

Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3