Double resonance in seismo-lithosphere-atmosphere-ionosphere coupling

Author:

Chen Chieh-Hung,Sun Yang-Yi,Zhang Xuemin,Gao Yongxin,Yisimayili Aisa,Qing Haiyin,Yeh Ta-Kang,Lin Kai,Wang Fei,Yen Horng-Yuan,Lin Cheng-Horng,Liu Jann‑Yenq

Abstract

nvestigations into causal mechanisms behind anomalous pre-earthquake phenomena are considered a promising way of earthquake prediction. Numerous promising channels for seismo-lithosphere-atmosphere-ionosphere coupling have been proposed; however, predicting earthquakes remains a great challenge in the scientific society. Short-period ground vibrations exhibiting frequency characteristics similar to natural frequencies caused by strata failure resonance have recently been detected using tiltmeters embedded in magnetometers prior to earthquakes. These vibrations originate from regions near the epicentres of forthcoming earthquakes and can be simultaneously detected by broadband seismometers and ground-based global navigation satellite system (GNSS) receivers. Unlike the total electron contents (TECs) obtained from orbiting satellites, the vibrations and the identifiable TEC perturbations in data from geostationary satellites of the BeiDou Navigation System share frequencies prior to earthquakes. However, the causal relationship between the vibrations and TEC perturbations remains unclear due to a gap in data observations between the lithosphere and ionosphere. To address this issue, an instrumental array was established to monitor vibrations and perturbations in the lithosphere, atmosphere, and ionosphere. Observational data from the array partially fill the gap, and analytical results show that ground vibrations, air pressure, magnetic fields, and TEC data shared a common frequency of approximately 5 × 10–3 Hz (5 mHz) before major earthquakes. This suggests that the resonant ground vibrations trigger atmospheric resonance before earthquakes. Therefore, the double resonance (crustal and atmospheric resonance) model is a new explanation for the observed anomalies in multiple geophysical parameters in the lithosphere, atmosphere, and ionosphere. Retrieving resonant signals from multiple sources of observational data is a significant challenge, but once this issue is overcome, double resonance may contribute to practical earthquake prediction.

Publisher

Instituto Nazionale di Geofisica e Vulcanologia, INGV

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3