Unveiling the structural transformation and activity origin of heteroatom-doped carbons for hydrogen evolution

Author:

Lu Shanshan1ORCID,Cheng Chuanqi2ORCID,Shi Yanmei1ORCID,Wu Yongmeng1ORCID,Zhang Zhipu1ORCID,Zhang Bin13ORCID

Affiliation:

1. Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China

2. Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China

3. Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China

Abstract

Heteroatom-doped carbon materials have been widely used in many electrocatalytic reduction reactions. Their structure-activity relationships are mainly explored based on the assumption that the doped carbon materials remain stable during electrocatalysis. However, the structural evolution of heteroatom-doped carbon materials is often ignored, and their active origins are still unclear. Herein, taking N-doped graphite flake (N-GP) as the research model, we present the hydrogenation of both N and C atoms and the consequent reconstruction of the carbon skeleton during the hydrogen evolution reaction (HER), accompanied by a remarkable promotion of the HER activity. The N dopants are gradually hydrogenated and almost completely dissolved in the form of ammonia. Theoretical simulations demonstrate that the hydrogenation of the N species leads to the reconstruction of the carbon skeleton from hexagonal to 5,7-topological rings (G5-7) with thermoneutral hydrogen adsorption and easy water dissociation. P-, S-, and Se-doped graphites also show similar removal of doped heteroatoms and the formation of G5-7 rings. Our work unveils the activity origin of heteroatom-doped carbon toward the HER and opens a door to rethinking the structure-performance relationships of carbon-based materials for other electrocatalytic reduction reactions.

Funder

MOST | National Natural Science Foundation of China

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3