The role of tropical rainfall in driving range dynamics for a long-distance migratory bird

Author:

Dossman Bryant C.1ORCID,Studds Colin E.2ORCID,LaDeau Shannon L.3ORCID,Sillett T. Scott4ORCID,Marra Peter P.5

Affiliation:

1. Department of Biology, Georgetown University, Washington, DC 20057

2. Department of Geography and Environmental Systems, University of Maryland Baltimore County, Baltimore, MD 21250

3. Cary Institute of Ecosystem Studies, Millbrook, NY 12545

4. Migratory Bird Center, Smithsonian’s National Zoo and Conservation Biology Institute, Washington, DC 20013

5. The Earth Commons Institute, Department of Biology, McCourt School of Public Policy, Georgetown University, Washington, DC 20057

Abstract

Predicting how the range dynamics of migratory species will respond to climate change requires a mechanistic understanding of the factors that operate across the annual cycle to control the distribution and abundance of a species. Here, we use multiple lines of evidence to reveal that environmental conditions during the nonbreeding season influence range dynamics across the life cycle of a migratory songbird, the American redstart ( Setophaga ruticilla ). Using long-term data from the nonbreeding grounds and breeding origins estimated from stable hydrogen isotopes in tail feathers, we found that the relationship between annual survival and migration distance is mediated by precipitation, but only during dry years. A long-term drying trend throughout the Caribbean is associated with higher mortality for individuals from the northern portion of the species’ breeding range, resulting in an approximate 500 km southward shift in breeding origins of this Jamaican population over the past 30 y. This shift in connectivity is mirrored by changes in the redstart’s breeding distribution and abundance. These results demonstrate that the climatic effects on demographic processes originating during the tropical nonbreeding season are actively shaping range dynamics in a migratory bird.

Funder

NSF | BIO | Division of Environmental Biology

Smithsonian Institution

Georgetown University

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3