Rational design of proteasome inhibitors based on the structure of the endogenous inhibitor PI31/Fub1

Author:

Velez Benjamin1ORCID,Razi Aida1ORCID,Hubbard Robert D.2,Walsh Richard34ORCID,Rawson Shaun34ORCID,Tian Geng5,Finley Daniel5,Hanna John1

Affiliation:

1. Department of Pathology, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115

2. Mass General Brigham, Boston, MA 02115

3. Harvard Cryo-Electron Microscopy Center for Structural Biology, Harvard Medical School, Boston, MA 02115

4. Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115

5. Department of Cell Biology, Harvard Medical School, Boston, MA 02115

Abstract

Proteasome inhibitors are widely used anticancer drugs. The three clinically approved agents are modified small peptides that preferentially target one of the proteasome’s three active sites (β5) at physiologic concentrations. In addition to these drugs, there is also an endogenous proteasome inhibitor, PI31/Fub1, that enters the proteasome’s interior to simultaneously yet specifically inhibit all three active sites. Here, we have used PI31’s evolutionarily optimized inhibitory mechanisms to develop a suite of potent and specific β2 inhibitors. The lead compound strongly inhibited growth of multiple myeloma cells as a standalone agent, indicating the compound’s cell permeability and establishing β2 as a potential therapeutic target in multiple myeloma. The lead compound also showed strong synergy with the existing β5 inhibitor bortezomib; such combination therapies might help with existing challenges of resistance and severe side effects. These results represent an effective method for rational structure-guided development of proteasome inhibitors.

Funder

HHS | NIH | National Institute of General Medical Sciences

Mass General Brigham

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3