The adaptive stochasticity hypothesis: Modeling equifinality, multifinality, and adaptation to adversity

Author:

Carozza Sofia123,Akarca Danyal1ORCID,Astle Duncan14

Affiliation:

1. Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, United Kingdom

2. Department of Neurology, Harvard Medical School, Boston, MA 02115

3. Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115

4. Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, United Kingdom

Abstract

Neural phenotypes are the result of probabilistic developmental processes. This means that stochasticity is an intrinsic aspect of the brain as it self-organizes over a protracted period. In other words, while both genomic and environmental factors shape the developing nervous system, another significant—though often neglected—contributor is the randomness introduced by probability distributions. Using generative modeling of brain networks, we provide a framework for probing the contribution of stochasticity to neurodevelopmental diversity. To mimic the prenatal scaffold of brain structure set by activity-independent mechanisms, we start our simulations from the medio-posterior neonatal rich club (Developing Human Connectome Project, n = 630). From this initial starting point, models implementing Hebbian-like wiring processes generate variable yet consistently plausible brain network topologies. By analyzing repeated runs of the generative process (>10 7 simulations), we identify critical determinants and effects of stochasticity. Namely, we find that stochastic variation has a greater impact on brain organization when networks develop under weaker constraints. This heightened stochasticity makes brain networks more robust to random and targeted attacks, but more often results in non-normative phenotypic outcomes. To test our framework empirically, we evaluated whether stochasticity varies according to the experience of early-life deprivation using a cohort of neurodiverse children (Centre for Attention, Learning and Memory; n = 357). We show that low-socioeconomic status predicts more stochastic brain wiring. We conclude that stochasticity may be an unappreciated contributor to relevant developmental outcomes and make specific predictions for future research.

Funder

Templeton World Charity Foundation

James S. McDonnell Foundation

UKRI | Medical Research Council

Cambridge Trust

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stochasticity in genetics and gene regulation;Philosophical Transactions of the Royal Society B: Biological Sciences;2024-03-04

2. Understanding divergence: Placing developmental neuroscience in its dynamic context;Neuroscience & Biobehavioral Reviews;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3