On the friendship paradox and inversity: A network property with applications to privacy-sensitive network interventions

Author:

Kumar Vineet1ORCID,Krackhardt David2ORCID,Feld Scott3ORCID

Affiliation:

1. Yale School of Management, Yale University, New Haven, CT 06511

2. John Heinz III College of Public Policy and Management, Carnegie Mellon University, Pittsburgh, PA 15213

3. Department of Sociology, College of Liberal Arts, Purdue University, West Lafayette, IN 47907

Abstract

We provide the mathematical and empirical foundations of the friendship paradox in networks, often stated as “Your friends have more friends than you.” We prove a set of network properties on friends of friends and characterize the concepts of ego-based and alter-based means. We propose a network property called inversity that quantifies the imbalance in degrees across edges and prove that the sign of inversity determines the ordering between ego-based or alter-based means for any network, with implications for interventions. Network intervention problems like immunization benefit from using highly connected nodes. We characterize two intervention strategies based on the friendship paradox to obtain such nodes, with the alter-based and ego-based strategy. Both strategies provide provably guaranteed improvements for any network structure with variation in node degrees. We demonstrate that the proposed strategies obtain several-fold improvement (100-fold in some networks) in node degree relative to a random benchmark, for both generated and real networks. We evaluate how inversity informs which strategy works better based on network topology and show how network aggregation can alter inversity. We illustrate how the strategies can be used to control contagion of an epidemic spreading across a set of village networks, finding that these strategies require far fewer nodes to be immunized (less than 50%, relative to random). The interventions do not require knowledge of network structure, are privacy-sensitive, are flexible for time-sensitive action, and only require selected nodes to nominate network neighbors.

Publisher

Proceedings of the National Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3