DPPA5A suppresses the mutagenic TLS and MMEJ pathways by modulating the cryptic splicing of Rev1 and Polq in mouse embryonic stem cells

Author:

Jiang Fangjie123ORCID,Wang Lin14ORCID,Dong Yuping124,Nie Wenhui1,Zhou Hu5ORCID,Gao Jing5,Zheng Ping146ORCID

Affiliation:

1. State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China

2. University of Chinese Academy of Sciences, Beijing 101408, China

3. Department of Reproductive Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China

4. Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China

5. Department of Analytical Chemistry and Key Laboratory of Receptor Research of Chinese Academy of Sciences, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China

6. The Chinese University of Hong Kong and Kunming Institute of Zoology Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China

Abstract

Genetic alterations are often acquired during prolonged propagation of pluripotent stem cells (PSCs). This ruins the stem cell quality and hampers their full applications. Understanding how PSCs maintain genomic integrity would provide the clues to overcome the hurdle. It has been known that embryonic stem cells (ESCs) utilize high-fidelity pathways to ensure genomic stability, but the underlying mechanisms remain largely elusive. Here, we show that many DNA damage response and repair genes display differential alternative splicing in mouse ESCs compared to differentiated cells. Particularly, Rev1 and Polq , two key genes for mutagenic translesion DNA synthesis (TLS) and microhomology-mediated end joining (MMEJ) repair pathways, respectively, display a significantly higher rate of cryptic exon (CE) inclusion in ESCs. The frequent CE inclusion disrupts the normal protein expressions of REV1 and POLθ, thereby suppressing the mutagenic TLS and MMEJ. Further, we identify an ESC-specific RNA binding protein DPPA5A which stimulates the CE inclusion in Rev1 and Polq . Depletion of DPPA5A in mouse ESCs decreased the CE inclusion of Rev1 and Polq , induced the protein expression, and stimulated the TLS and MMEJ activity. Enforced expression of DPPA5A in NIH3T3 cells displayed reverse effects. Mechanistically, we found that DPPA5A directly regulated CE splicing of Rev1 . DPPA5A associates with U2 small nuclear ribonucleoprotein of the spliceosome and binds to the GA-rich motif in the CE of Rev1 to promote CE inclusion. Thus, our study uncovers a mechanism to suppress mutagenic TLS and MMEJ pathways in ESCs.

Funder

MOST | National Key Research and Development Program of China Stem Cell and Translational Research

MOST | National Natural Science Foundation of China

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3