Uncoordinated chemistry enables highly conductive and stable electrolyte/filler interfaces for solid-state lithium–sulfur batteries

Author:

Zhu Yanfei12,Zhang Qi1,Zheng Yun2,Li Gaoran2ORCID,Gao Rui2,Piao Zhihong1ORCID,Luo Dan2,Gao Run-Hua1,Zhang Mengtian1,Xiao Xiao1,Li Chuang1,Lao Zhoujie1,Wang Jian3ORCID,Chen Zhongwei2,Zhou Guangmin1ORCID

Affiliation:

1. Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong, People's Republic of China

2. Department of Chemical Engineering, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada

3. Canadian Light Source, Saskatoon, SK S7N 2V3, Canada

Abstract

Composite-polymer-electrolytes (CPEs) embedded with advanced filler materials offer great promise for fast and preferential Li + conduction. The filler surface chemistry determines the interaction with electrolyte molecules and thus critically regulates the Li + behaviors at the interfaces. Herein, we probe into the role of electrolyte/filler interfaces (EFI) in CPEs and promote Li + conduction by introducing an unsaturated coordination Prussian blue analog (UCPBA) filler. Combining scanning transmission X-ray microscope stack imaging studies and first-principle calculations, fast Li + conduction is revealed only achievable at a chemically stable EFI, which can be established by the unsaturated Co–O coordination in UCPBA to circumvent the side reactions. Moreover, the as-exposed Lewis-acid metal centers in UCPBA efficiently attract the Lewis-base anions of Li salts, which facilitates the Li + disassociation and enhances its transference number (t Li + ). Attributed to these superiorities, the obtained CPEs realize high room-temperature ionic conductivity up to 0.36 mS cm −1 and t Li + of 0.6, enabling an excellent cyclability of lithium metal electrodes over 4,000 h as well as remarkable capacity retention of 97.6% over 180 cycles at 0.5 C for solid-state lithium–sulfur batteries. This work highlights the crucial role of EFI chemistry in developing highly conductive CPEs and high-performance solid-state batteries.

Funder

MOST | National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3