Tree architecture: A strigolactone-deficient mutant reveals a connection between branching order and auxin gradient along the tree stem

Author:

Su Chang12ORCID,Kokosza Andrzej3ORCID,Xie Xiaonan4ORCID,Pěnčík Aleš5ORCID,Zhang Youjun67ORCID,Raumonen Pasi8ORCID,Shi Xueping9ORCID,Muranen Sampo12ORCID,Topcu Melis Kucukoglu12ORCID,Immanen Juha110ORCID,Hagqvist Risto10,Safronov Omid111,Alonso-Serra Juan12ORCID,Eswaran Gugan12ORCID,Venegas Mirko Pavicic1314ORCID,Ljung Karin15ORCID,Ward Sally16ORCID,Mähönen Ari Pekka12ORCID,Himanen Kristiina114ORCID,Salojärvi Jarkko117ORCID,Fernie Alisdair R.67ORCID,Novák Ondřej518,Leyser Ottoline16,Pałubicki Wojtek3,Helariutta Ykä1216ORCID,Nieminen Kaisa110ORCID

Affiliation:

1. Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki 00014, Finland

2. Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland

3. Mathematics and Computer Science, Adam Mickiewicz University, Poznań 61-614, Poland

4. Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya 321-8505, Japan

5. Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, Faculty of Science of Palacký University, Olomouc CZ-78371, Czech Republic

6. Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany

7. Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria

8. Mathematics, Tampere University, Tampere 33720, Finland

9. Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China

10. Production Systems, Natural Resources Institute Finland (Luke), Helsinki 00790, Finland

11. Molecular and Integrative Biosciences Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki 00014, Finland

12. Laboratoire de Reproduction et Développement des Plantes, École Normale Supérieure de Lyon, Institut National de la Recherche Agronomique, Lyon 69342, France

13. Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830

14. National Plant Phenotyping Infrastructure, Helsinki Institute of Life Science, University of Helsinki, Biocenter Finland, Helsinki 00014, Finland

15. Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden

16. Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom

17. School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore

18. Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University and Institute of Experimental Botany of the Academy of Sciences of the Czech Republic, Olomouc 78371, Czech Republic

Abstract

Due to their long lifespan, trees and bushes develop higher order of branches in a perennial manner. In contrast to a tall tree, with a clearly defined main stem and branching order, a bush is shorter and has a less apparent main stem and branching pattern. To address the developmental basis of these two forms, we studied several naturally occurring architectural variants in silver birch ( Betula pendula ). Using a candidate gene approach, we identified a bushy kanttarelli variant with a loss-of-function mutation in the BpMAX1 gene required for strigolactone (SL) biosynthesis. While kanttarelli is shorter than the wild type (WT), it has the same number of primary branches, whereas the number of secondary branches is increased, contributing to its bush-like phenotype. To confirm that the identified mutation was responsible for the phenotype, we phenocopied kanttarelli in transgenic BpMAX1::RNAi birch lines. SL profiling confirmed that both kanttarelli and the transgenic lines produced very limited amounts of SL. Interestingly, the auxin (IAA) distribution along the main stem differed between WT and BpMAX1::RNAi . In the WT, the auxin concentration formed a gradient, being higher in the uppermost internodes and decreasing toward the basal part of the stem, whereas in the transgenic line, this gradient was not observed. Through modeling, we showed that the different IAA distribution patterns may result from the difference in the number of higher-order branches and plant height. Future studies will determine whether the IAA gradient itself regulates aspects of plant architecture.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3