Affiliation:
1. Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853
2. Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853
Abstract
We propose a design paradigm for multistate machines where transitions from one state to another are organized by bifurcations of multiple equilibria of the energy landscape describing the collective interactions of the machine components. This design paradigm is attractive since, near bifurcations, small variations in a few control parameters can result in large changes to the system’s state providing an emergent lever mechanism. Further, the topological configuration of transitions between states near such bifurcations ensures robust operation, making the machine less sensitive to fabrication errors and noise. To design such machines, we develop and implement a new efficient algorithm that searches for interactions between the machine components that give rise to energy landscapes with these bifurcation structures. We demonstrate a proof of concept for this approach by designing magnetoelastic machines whose motions are primarily guided by their magnetic energy landscapes and show that by operating near bifurcations we can achieve multiple transition pathways between states. This proof of concept demonstration illustrates the power of this approach, which could be especially useful for soft robotics and at the microscale where typical macroscale designs are difficult to implement.
Funder
National Science Foundation
CU | Cornell Center for Materials Research
DOD | USAF | AMC | Air Force Office of Scientific Research
Cornell Laboratory of Atomic and Solid State Physics.
Eric and Wendy Schmidt AI in Science Postdoctoral Fellowship
Publisher
Proceedings of the National Academy of Sciences
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献