Molecular responses during bacterial filamentation reveal inhibition methods of drug-resistant bacteria

Author:

Zhang Dongxue1ORCID,Yin Fan1,Qin Qin2,Qiao Liang1ORCID

Affiliation:

1. Department of Chemistry, Shanghai Stomatological Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200000, China

2. Changhai Hospital, The Naval Military Medical University, Shanghai 200433, China

Abstract

Bacterial antimicrobial resistance (AMR) is among the most significant challenges to current human society. Exposing bacteria to antibiotics can activate their self-saving responses, e.g., filamentation, leading to the development of bacterial AMR. Understanding the molecular changes during the self-saving responses can reveal new inhibition methods of drug-resistant bacteria. Herein, we used an online microfluidics mass spectrometry system for real-time characterization of metabolic changes of bacteria during filamentation under the stimulus of antibiotics. Significant pathways, e.g., nucleotide metabolism and coenzyme A biosynthesis, correlated to the filamentation of extended-spectrum beta-lactamase-producing Escherichia coli (ESBL- E. coli ) were identified. A cyclic dinucleotide, c-di-GMP, which is derived from nucleotide metabolism and reported closely related to bacterial resistance and tolerance, was observed significantly up-regulated during the bacterial filamentation. By using a chemical inhibitor, ebselen, to inhibit diguanylate cyclases which catalyzes the synthesis of c-di-GMP, the minimum inhibitory concentration of ceftriaxone against ESBL- E. coli was significantly decreased. This inhibitory effect was also verified with other ESBL- E. coli strains and other beta-lactam antibiotics, i.e., ampicillin. A mutant strain of ESBL- E. coli by knocking out the dgcM gene was used to demonstrate that the inhibition of the antibiotic resistance to beta-lactams by ebselen was mediated through the inhibition of the diguanylate cyclase DgcM and the modulation of c-di-GMP levels. Our study uncovers the molecular changes during bacterial filamentation and proposes a method to inhibit antibiotic-resistant bacteria by combining traditional antibiotics and chemical inhibitors against the enzymes involved in bacterial self-saving responses.

Funder

MOST | National Natural Science Foundation of China

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference73 articles.

1. Antibiotic resistance in bacteria - an emerging public health problem;Komolafe O. O.;Malawi Med. J.,2003

2. World Health Organization Report: Current Crisis of Antibiotic Resistance

3. Extended-Spectrum β-Lactamases: a Clinical Update

4. CDC Antibiotic resistance threats in the United States (CDC Centers for Disease Control and Prevention Department of Health and Human Services 2019).

5. Optimized arylomycins are a new class of Gram-negative antibiotics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3