Author:
Kopp Robert E.,Kemp Andrew C.,Bittermann Klaus,Horton Benjamin P.,Donnelly Jeffrey P.,Gehrels W. Roland,Hay Carling C.,Mitrovica Jerry X.,Morrow Eric D.,Rahmstorf Stefan
Abstract
We assess the relationship between temperature and global sea-level (GSL) variability over the Common Era through a statistical metaanalysis of proxy relative sea-level reconstructions and tide-gauge data. GSL rose at 0.1 ± 0.1 mm/y (2σ) over 0–700 CE. A GSL fall of 0.2 ± 0.2 mm/y over 1000–1400 CE is associated with ∼0.2 °C global mean cooling. A significant GSL acceleration began in the 19th century and yielded a 20th century rise that is extremely likely (probability P≥0.95) faster than during any of the previous 27 centuries. A semiempirical model calibrated against the GSL reconstruction indicates that, in the absence of anthropogenic climate change, it is extremely likely (P=0.95) that 20th century GSL would have risen by less than 51% of the observed 13.8±1.5 cm. The new semiempirical model largely reconciles previous differences between semiempirical 21st century GSL projections and the process model-based projections summarized in the Intergovernmental Panel on Climate Change’s Fifth Assessment Report.
Funder
National Science Foundation
DOC | National Oceanic and Atmospheric Administration
U.S. Department of Defense
New Jersey Sea Grant Consortium
Publisher
Proceedings of the National Academy of Sciences
Cited by
335 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献