Author:
Reimers Jeffrey R.,Panduwinata Dwi,Visser Johan,Chin Yiing,Tang Chunguang,Goerigk Lars,Ford Michael J.,Sintic Maxine,Sum Tze-Jing,Coenen Michiel J. J.,Hendriksen Bas L. M.,Elemans Johannes A. A. W.,Hush Noel S.,Crossley Maxwell J.
Abstract
Modern quantum chemical electronic structure methods typically applied to localized chemical bonding are developed to predict atomic structures and free energies for meso-tetraalkylporphyrin self-assembled monolayer (SAM) polymorph formation from organic solution on highly ordered pyrolytic graphite surfaces. Large polymorph-dependent dispersion-induced substrate−molecule interactions (e.g., −100 kcal mol−1 to −150 kcal mol−1 for tetratrisdecylporphyrin) are found to drive SAM formation, opposed nearly completely by large polymorph-dependent dispersion-induced solvent interactions (70–110 kcal mol−1) and entropy effects (25–40 kcal mol−1 at 298 K) favoring dissolution. Dielectric continuum models of the solvent are used, facilitating consideration of many possible SAM polymorphs, along with quantum mechanical/molecular mechanical and dispersion-corrected density functional theory calculations. These predict and interpret newly measured and existing high-resolution scanning tunnelling microscopy images of SAM structure, rationalizing polymorph formation conditions. A wide range of molecular condensed matter properties at room temperature now appear suitable for prediction and analysis using electronic structure calculations.
Funder
Department of Industry, Innovation, Science, Research and Tertiary Education, Australian Government | Australian Research Council
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
EC | European Research Council
Publisher
Proceedings of the National Academy of Sciences
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献