Ab initio optimization of phonon drag effect for lower-temperature thermoelectric energy conversion

Author:

Zhou Jiawei,Liao Bolin,Qiu Bo,Huberman Samuel,Esfarjani Keivan,Dresselhaus Mildred S.,Chen Gang

Abstract

Although the thermoelectric figure of merit zT above 300 K has seen significant improvement recently, the progress at lower temperatures has been slow, mainly limited by the relatively low Seebeck coefficient and high thermal conductivity. Here we report, for the first time to our knowledge, success in first-principles computation of the phonon drag effect—a coupling phenomenon between electrons and nonequilibrium phonons—in heavily doped region and its optimization to enhance the Seebeck coefficient while reducing the phonon thermal conductivity by nanostructuring. Our simulation quantitatively identifies the major phonons contributing to the phonon drag, which are spectrally distinct from those carrying heat, and further reveals that although the phonon drag is reduced in heavily doped samples, a significant contribution to Seebeck coefficient still exists. An ideal phonon filter is proposed to enhance zT of silicon at room temperature by a factor of 20 to ∼0.25, and the enhancement can reach 70 times at 100 K. This work opens up a new venue toward better thermoelectrics by harnessing nonequilibrium phonons.

Funder

U.S. Department of Energy

DOD | Air Force Office of Scientific Research

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference52 articles.

1. Ziman JM (1960) Electrons and Phonons: The Theory of Transport Phenomena in Solids (Clarendon, Oxford)

2. Bemerkung zur Elektronentheorie des Ferromagnetismus und der elektrischen Leitf�higkeit

3. Lundstrom M (2009) Fundamentals of Carrier Transport (Cambridge Univ Press, Cambridge, UK)

4. Thermoelectric properties of conductors;Gurevich;J Phys (Moscow),1945

5. Thermoelectric Power of Germanium below Room Temperature

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3