Territories of heterologous inputs onto Purkinje cell dendrites are segregated by mGluR1-dependent parallel fiber synapse elimination

Author:

Ichikawa Ryoichi,Hashimoto Kouichi,Miyazaki Taisuke,Uchigashima Motokazu,Yamasaki Miwako,Aiba Atsu,Kano Masanobu,Watanabe Masahiko

Abstract

In Purkinje cells (PCs) of the cerebellum, a single “winner” climbing fiber (CF) monopolizes proximal dendrites, whereas hundreds of thousands of parallel fibers (PFs) innervate distal dendrites, and both CF and PF inputs innervate a narrow intermediate domain. It is unclear how this segregated CF and PF innervation is established on PC dendrites. Through reconstruction of dendritic innervation by serial electron microscopy, we show that from postnatal day 9–15 in mice, both CF and PF innervation territories vigorously expand because of an enlargement of the region of overlapping innervation. From postnatal day 15 onwards, segregation of these territories occurs with robust shortening of the overlapping proximal region. Thus, innervation territories by the heterologous inputs are refined during the early postnatal period. Intriguingly, this transition is arrested in mutant mice lacking the type 1 metabotropic glutamate receptor (mGluR1) or protein kinase Cγ (PKCγ), resulting in the persistence of an abnormally expanded overlapping region. This arrested territory refinement is rescued by lentivirus-mediated expression of mGluR1α into mGluR1-deficient PCs. At the proximal dendrite of rescued PCs, PF synapses are eliminated and free spines emerge instead, whereas the number and density of CF synapses are unchanged. Because the mGluR1-PKCγ signaling pathway is also essential for the late-phase of CF synapse elimination, this signaling pathway promotes the two key features of excitatory synaptic wiring in PCs, namely CF monoinnervation by eliminating redundant CF synapses from the soma, and segregated territories of CF and PF innervation by eliminating competing PF synapses from proximal dendrites.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3