A genetic basis of variation in eccrine sweat gland and hair follicle density

Author:

Kamberov Yana G.,Karlsson Elinor K.ORCID,Kamberova Gerda L.,Lieberman Daniel E.,Sabeti Pardis C.,Morgan Bruce A.,Tabin Clifford J.

Abstract

Among the unique features of humans, one of the most salient is the ability to effectively cool the body during extreme prolonged activity through the evapotranspiration of water on the skin’s surface. The evolution of this novel physiological ability required a dramatic increase in the density and distribution of eccrine sweat glands relative to other mammals and a concomitant reduction of body hair cover. Elucidation of the genetic underpinnings for these adaptive changes is confounded by a lack of knowledge about how eccrine gland fate and density are specified during development. Moreover, although reciprocal changes in hair cover and eccrine gland density are required for efficient thermoregulation, it is unclear if these changes are linked by a common genetic regulation. To identify pathways controlling the relative patterning of eccrine glands and hair follicles, we exploited natural variation in the density of these organs between different strains of mice. Quantitative trait locus mapping identified a large region on mouse Chromosome 1 that controls both hair and eccrine gland densities. Differential and allelic expression analysis of the genes within this interval coupled with subsequent functional studies demonstrated that the level of En1 activity directs the relative numbers of eccrine glands and hair follicles. These findings implicate En1 as a newly identified and reciprocal determinant of hair follicle and eccrine gland density and identify a pathway that could have contributed to the evolution of the unique features of human skin.

Funder

HHS | NIH | National Institute of Child Health and Human Development

nih director's pioneer award program

HHS | NIH | National Institute of Arthritis and Musculoskeletal and Skin Diseases

David and Lucile Packard Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3