Diversity buffers winegrowing regions from climate change losses

Author:

Morales-Castilla IgnacioORCID,García de Cortázar-Atauri IñakiORCID,Cook Benjamin I.,Lacombe ThierryORCID,Parker AmberORCID,van Leeuwen CornelisORCID,Nicholas Kimberly A.ORCID,Wolkovich Elizabeth M.

Abstract

Agrobiodiversity—the variation within agricultural plants, animals, and practices—is often suggested as a way to mitigate the negative impacts of climate change on crops [S. A. Wood et al., Trends Ecol. Evol. 30, 531–539 (2015)]. Recently, increasing research and attention has focused on exploiting the intraspecific genetic variation within a crop [Hajjar et al., Agric. Ecosyst. Environ. 123, 261–270 (2008)], despite few relevant tests of how this diversity modifies agricultural forecasts. Here, we quantify how intraspecific diversity, via cultivars, changes global projections of growing areas. We focus on a crop that spans diverse climates, has the necessary records, and is clearly impacted by climate change: winegrapes (predominantly Vitis vinifera subspecies vinifera). We draw on long-term French records to extrapolate globally for 11 cultivars (varieties) with high diversity in a key trait for climate change adaptation—phenology. We compared scenarios where growers shift to more climatically suitable cultivars as the climate warms or do not change cultivars. We find that cultivar diversity more than halved projected losses of current winegrowing areas under a 2 °C warming scenario, decreasing areas lost from 56 to 24%. These benefits are more muted at higher warming scenarios, reducing areas lost by a third at 4 °C (85% versus 58%). Our results support the potential of in situ shifting of cultivars to adapt agriculture to climate change—including in major winegrowing regions—as long as efforts to avoid higher warming scenarios are successful.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference59 articles.

1. Food and Agriculture Organization of the United Nations , “The contribution of plant genetic resources for food and agriculture to food security and sustainable agricultural development” in The Second Report on the State of the World’s Plant Genetic Resources for Food and Agriculture (Food and Agriculture Organization of the United Nations, Rome, Italy 2010), pp. 182–201; http://www.fao.org/docrep/013/i1500e/i1500e08.pdf .

2. Functional traits in agriculture: Agrobiodiversity and ecosystem services;Wood;Trends Ecol. Evol.,2015

3. The utility of crop genetic diversity in maintaining ecosystem services

4. Food Security: The Challenge of Feeding 9 Billion People

5. Prioritizing Climate Change Adaptation Needs for Food Security in 2030

Cited by 119 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3