Peroxidase evolution in white-rot fungi follows wood lignin evolution in plants

Author:

Ayuso-Fernández IvánORCID,Rencoret JorgeORCID,Gutiérrez Ana,Ruiz-Dueñas Francisco JavierORCID,Martínez Angel T.ORCID

Abstract

A comparison of sequenced Agaricomycotina genomes suggests that efficient degradation of wood lignin was associated with the appearance of secreted peroxidases with a solvent-exposed catalytic tryptophan. This hypothesis is experimentally demonstrated here by resurrecting ancestral fungal peroxidases, after sequence reconstruction from genomes of extant white-rot Polyporales, and evaluating their oxidative attack on the lignin polymer by state-of-the-art analytical techniques. Rapid stopped-flow estimation of the transient-state constants for the 2 successive one-electron transfers from lignin to the peroxide-activated enzyme (k2app and k3app) showed a progressive increase during peroxidase evolution (up to 50-fold higher values for the rate-limiting k3app). The above agreed with 2-dimensional NMR analyses during steady-state treatments of hardwood lignin, showing that its degradation (estimated from the normalized aromatic signals of lignin units compared with a control) and syringyl-to-guaiacyl ratio increased with the enzyme evolutionary distance from the first peroxidase ancestor. More interestingly, the stopped-flow estimations of electron transfer rates also showed how the most recent peroxidase ancestors that already incorporated the exposed tryptophan into their molecular structure (as well as the extant lignin peroxidase) were comparatively more efficient at oxidizing hardwood (angiosperm) lignin, while the most ancestral “tryptophanless” enzymes were more efficient at abstracting electrons from softwood (conifer) lignin. A time calibration of the ancestry of Polyporales peroxidases localized the appearance of the first peroxidase with a solvent-exposed catalytic tryptophan to 194 ± 70 Mya, coincident with the diversification of angiosperm plants characterized by the appearance of dimethoxylated syringyl lignin units.

Funder

EC | Horizon 2020 Framework Programme

Ministerio de Economía y Competitividad

DOE | Office of Science

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3