Akt phosphorylation of neuronal nitric oxide synthase regulates gastrointestinal motility in mouse ileum

Author:

Guerra Damian D.ORCID,Bok Rachael,Vyas Vibhuti,Orlicky David J.ORCID,Lorca Ramón A.,Hurt K. JosephORCID

Abstract

Nitric oxide (NO) is a major inhibitory neurotransmitter that mediates nonadrenergic noncholinergic (NANC) signaling. Neuronal NO synthase (nNOS) is activated by Ca2+/calmodulin to produce NO, which causes smooth muscle relaxation to regulate physiologic tone. nNOS serine1412 (S1412) phosphorylation may reduce the activating Ca2+ requirement and sustain NO production. We developed and characterized a nonphosphorylatable nNOSS1412A knock-in mouse and evaluated its enteric neurotransmission and gastrointestinal (GI) motility to understand the physiologic significance of nNOS S1412 phosphorylation. Electrical field stimulation (EFS) of wild-type (WT) mouse ileum induced nNOS S1412 phosphorylation that was blocked by tetrodotoxin and by inhibitors of the protein kinase Akt but not by PKA inhibitors. Low-frequency depolarization increased nNOS S1412 phosphorylation and relaxed WT ileum but only partially relaxed nNOSS1412A ileum. At higher frequencies, nNOS S1412 had no effect. nNOSS1412A ileum expressed less phosphodiesterase-5 and was more sensitive to relaxation by exogenous NO. Under non-NANC conditions, peristalsis and segmentation were faster in the nNOSS1412A ileum. Together these findings show that neuronal depolarization stimulates enteric nNOS phosphorylation by Akt to promote normal GI motility. Thus, phosphorylation of nNOS S1412 is a significant regulatory mechanism for nitrergic neurotransmission in the gut.

Funder

HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3