Author:
Casper W. Riley,Grünbaum F. Alberto,Yakimov Milen,Zurrián Ignacio
Abstract
Commuting integral and differential operators connect the topics of signal processing, random matrix theory, and integrable systems. Previously, the construction of such pairs was based on direct calculation and concerned concrete special cases, leaving behind important families such as the operators associated to the rational solutions of the Korteweg–de Vries (KdV) equation. We prove a general theorem that the integral operator associated to every wave function in the infinite-dimensional adelic GrassmannianGradof Wilson always reflects a differential operator (in the sense ofDefinition 1below). This intrinsic property is shown to follow from the symmetries of Grassmannians of Kadomtsev–Petviashvili (KP) wave functions, where the direct commutativity property holds for operators associated to wave functions fixed by Wilson’s sign involution but is violated in general. Based on this result, we prove a second main theorem that the integral operators in the computation of the singular values of the truncated generalized Laplace transforms associated to all bispectral wave functions of rank 1 reflect a differential operator. A90○rotation argument is used to prove a third main theorem that the integral operators in the computation of the singular values of the truncated generalized Fourier transforms associated to all such KP wave functions commute with a differential operator. These methods produce vast collections of integral operators with prolate-spheroidal properties, including as special cases the integral operators associated to all rational solutions of the KdV and KP hierarchies considered by [Airault, McKean, and Moser,Commun. Pure Appl. Math.30, 95–148 (1977)] and [Krichever,Funkcional. Anal. i Priložen.12, 76–78 (1978)], respectively, in the late 1970s. Many examples are presented.
Funder
National Science Foundation
Bulgarian National Science Fund
Simons Foundation
Consejo Nacional de Investigaciones Científicas y Técnicas
Publisher
Proceedings of the National Academy of Sciences
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献