Abstract
The elucidation of the detailed mechanism used by F0to convert proton gradient to torque and rotational motion presents a major puzzle despite significant biophysical and structural progress. Although the conceptual model has advanced our understanding of the working principles of such systems, it is crucial to explore the actual mechanism using structure-based models that actually reproduce a unidirectional proton-driven rotation. Our previous work used a coarse-grained (CG) model to simulate the action of F0. However, the simulations were based on a very tentative structural model of the interaction between subunit a and subunit c. Here, we again use a CG model but with a recent cryo-EM structure of cF1F0and also explore the proton path using our water flooding and protein dipole Langevin dipole semimacroscopic formalism with its linear response approximation version (PDLD/S-LRA) approaches. The simulations are done in the combined space defined by the rotational coordinate and the proton transport coordinate. The study reproduced the effect of the protomotive force on the rotation of the F0while establishing the electrostatic origin of this effect. Our landscape reproduces the correct unidirectionality of the synthetic direction of the F0rotation and shows that it reflects the combined electrostatic coupling between the proton transport path and the c-ring conformational change. This work provides guidance for further studies in other proton-driven mechanochemical systems and should lead (when combined with studies of F1) to a complete energy transduction picture of the F0F1-ATPase system.
Funder
National Science Foundation
HHS | National Institutes of Health
Publisher
Proceedings of the National Academy of Sciences
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献