Hydrophobic gasket mutation produces gating pore currents in closed human voltage-gated proton channels

Author:

Banh Richard,Cherny Vladimir V.,Morgan Deri,Musset BorisORCID,Thomas Sarah,Kulleperuma Kethika,Smith Susan M. E.,Pomès Régis,DeCoursey Thomas E.ORCID

Abstract

The hydrophobic gasket (HG), a ring of hydrophobic amino acids in the voltage-sensing domain of most voltage-gated ion channels, forms a constriction between internal and external aqueous vestibules. Cationic Arg or Lys side chains lining the S4 helix move through this “gating pore” when the channel opens. S4 movement may occur during gating of the human voltage-gated proton channel, hHV1, but proton current flows through the same pore in open channels. Here, we replaced putative HG residues with less hydrophobic residues or acidic Asp. Substitution of individuals, pairs, or all 3 HG positions did not impair proton selectivity. Evidently, the HG does not act as a secondary selectivity filter. However, 2 unexpected functions of the HG in HV1 were discovered. Mutating HG residues independently accelerated channel opening and compromised the closed state. Mutants exhibited open–closed gating, but strikingly, at negative voltages where “normal” gating produces a nonconducting closed state, the channel leaked protons. Closed-channel proton current was smaller than open-channel current and was inhibited by 10 μM Zn2+. Extreme hyperpolarization produced a deeper closed state through a weakly voltage-dependent transition. We functionally identify the HG as Val109, Phe150, Val177, and Val178, which play a critical and exclusive role in preventing H+ influx through closed channels. Molecular dynamics simulations revealed enhanced mobility of Arg208 in mutants exhibiting H+ leak. Mutation of HG residues produces gating pore currents reminiscent of several channelopathies.

Funder

HHS | NIH | National Institute of General Medical Sciences

NSF | BIO | Division of Molecular and Cellular Biosciences

Bears Care

Deutsche Forschungsgemeinschaft

Gouvernement du Canada | Canadian Institutes of Health Research

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3