A universal transportin protein drives stochastic choice of olfactory neurons via specific nuclear import of a sox-2-activating factor

Author:

Alqadah Amel,Hsieh Yi-Wen,Xiong Rui,Lesch Bluma J.,Chang Chieh,Chuang Chiou-Fen

Abstract

Stochastic neuronal cell fate choice involving notch-independent mechanisms is a poorly understood biological process. The Caenorhabditis elegans AWC olfactory neuron pair asymmetrically differentiates into the default AWCOFF and induced AWCON subtypes in a stochastic manner. Stochastic choice of the AWCON subtype is established using gap junctions and SLO BK potassium channels to repress a calcium-activated protein kinase pathway. However, it is unknown how the potassium channel-repressed calcium signaling is translated into the induction of the AWCON subtype. Here, we identify a detailed working mechanism of how the homeodomain-like transcription factor NSY-7, previously described as a repressor in the maintenance of AWC asymmetry, couples SLO BK potassium channels to transactivation of sox-2 expression for the induction of the AWCON subtype through the identification of a unique imb-2 (transportin 1) allele. imb-2 loss-of-function mutants are not viable; however, we identify a viable imb-2 allele from an unbiased forward genetic screen that reveals a specific role of imb-2 in AWC olfactory neuron asymmetry. IMB-2 specifically drives nuclear import of NSY-7 within AWC neurons to transactivate the expression of the high mobility group (HMG)-box transcription factor SOX-2 for the specification of the AWCON subtype. This study provides mechanistic insight into how NSY-7 couples SLO BK potassium channels to transactivation of sox-2 expression for the induction of the AWCON subtype. Our findings also provide structure-function insight into a conserved amino acid residue of transportins in brain development and suggest its dysfunction may lead to human neurological disorders.

Funder

HHS | National Institutes of Health

Whitehall Foundation

Alfred P. Sloan Foundation

National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3