Abstract
Quantum materials are amenable to nonequilibrium manipulation with light, enabling modification and control of macroscopic properties. Light-based augmentation of superconductivity is particularly intriguing. Copper-oxide superconductors exhibit complex interplay between spin order, charge order, and superconductivity, offering the prospect of enhanced coherence by altering the balance between competing orders. We utilize terahertz time-domain spectroscopy to monitor the c-axis Josephson plasma resonance (JPR) in La2−xBaxCuO4 (x = 0.115) as a direct probe of superconductivity dynamics following excitation with near-infrared pulses. Starting from the superconducting state, c-axis polarized excitation with a fluence of 100 μJ/cm2 results in an increase of the far-infrared spectral weight by more than an order of magnitude as evidenced by a blueshift of the JPR, interpreted as resulting from nonthermal collapse of the charge order. The photoinduced signal persists well beyond our measurement window of 300 ps and exhibits signatures of spatial inhomogeneity. The electrodynamic response of this metastable state is consistent with enhanced superconducting fluctuations. Our results reveal that La2−xBaxCuO4 is highly sensitive to nonequilibrium excitation over a wide fluence range, providing an unambiguous example of photoinduced modification of order-parameter competition.
Funder
U.S. Department of Energy
Publisher
Proceedings of the National Academy of Sciences
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献