Childhood trauma history is linked to abnormal brain connectivity in major depression

Author:

Yu Meichen,Linn Kristin A.,Shinohara Russell T.,Oathes Desmond J.,Cook Philip A.,Duprat Romain,Moore Tyler M.ORCID,Oquendo Maria A.,Phillips Mary L.,McInnis Melvin,Fava Maurizio,Trivedi Madhukar H.,McGrath Patrick,Parsey Ramin,Weissman Myrna M.,Sheline Yvette I.

Abstract

Patients with major depressive disorder (MDD) present with heterogeneous symptom profiles, while neurobiological mechanisms are still largely unknown. Brain network studies consistently report disruptions of resting-state networks (RSNs) in patients with MDD, including hypoconnectivity in the frontoparietal network (FPN), hyperconnectivity in the default mode network (DMN), and increased connection between the DMN and FPN. Using a large, multisite fMRI dataset (n= 189 patients with MDD,n= 39 controls), we investigated network connectivity differences within and between RSNs in patients with MDD and healthy controls. We found that MDD could be characterized by a network model with the following abnormalities relative to controls: (i) lower within-network connectivity in three task-positive RSNs [FPN, dorsal attention network (DAN), and cingulo-opercular network (CON)], (ii) higher within-network connectivity in two intrinsic networks [DMN and salience network (SAN)], and (iii) higher within-network connectivity in two sensory networks [sensorimotor network (SMN) and visual network (VIS)]. Furthermore, we found significant alterations in connectivity between a number of these networks. Among patients with MDD, a history of childhood trauma and current symptoms quantified by clinical assessments were associated with a multivariate pattern of seven different within- and between-network connectivities involving the DAN, FPN, CON, subcortical regions, ventral attention network (VAN), auditory network (AUD), VIS, and SMN. Overall, our study showed that traumatic childhood experiences and dimensional symptoms are linked to abnormal network architecture in MDD. Our results suggest that RSN connectivity may explain underlying neurobiological mechanisms of MDD symptoms and has the potential to serve as an effective diagnostic biomarker.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3