Abstract
The Geological Orrery is a network of geological records of orbitally paced climate designed to address the inherent limitations of solutions for planetary orbits beyond 60 million years ago due to the chaotic nature of Solar System motion. We use results from two scientific coring experiments in Early Mesozoic continental strata: the Newark Basin Coring Project and the Colorado Plateau Coring Project. We precisely and accurately resolve the secular fundamental frequencies of precession of perihelion of the inner planets and Jupiter for the Late Triassic and Early Jurassic epochs (223–199 million years ago) using the lacustrine record of orbital pacing tuned only to one frequency (1/405,000 years) as a geological interferometer. Excepting Jupiter’s, these frequencies differ significantly from present values as determined using three independent techniques yielding practically the same results. Estimates for the precession of perihelion of the inner planets are robust, reflecting a zircon U–Pb-based age model and internal checks based on the overdetermined origins of the geologically measured frequencies. Furthermore, although not indicative of a correct solution, one numerical solution closely matches the Geological Orrery, with a very low probability of being due to chance. To determine the secular fundamental frequencies of the precession of the nodes of the planets and the important secular resonances with the precession of perihelion, a contemporaneous high-latitude geological archive recording obliquity pacing of climate is needed. These results form a proof of concept of the Geological Orrery and lay out an empirical framework to map the chaotic evolution of the Solar System.
Funder
National Science Foundation
International Continental Scientific Drilling Program
National Natural Science Foundation of China
Special Basic Program of Ministry of Science and Technology of China
Bureau of Geological Survey of China and the National Committee of Stratigraphy of China
Publisher
Proceedings of the National Academy of Sciences
Cited by
68 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献