Complete biosynthetic pathways of ascofuranone and ascochlorin inAcremonium egyptiacum

Author:

Araki Yasuko,Awakawa TakayoshiORCID,Matsuzaki MotomichiORCID,Cho Rihe,Matsuda YudaiORCID,Hoshino Shotaro,Shinohara Yasutomo,Yamamoto Masaichi,Kido Yasutoshi,Inaoka Daniel Ken,Nagamune Kisaburo,Ito Kotaro,Abe IkuroORCID,Kita KiyoshiORCID

Abstract

Ascofuranone (AF) and ascochlorin (AC) are meroterpenoids produced by various filamentous fungi, includingAcremonium egyptiacum(synonym:Acremonium sclerotigenum), and exhibit diverse physiological activities. In particular, AF is a promising drug candidate against African trypanosomiasis and a potential anticancer lead compound. These compounds are supposedly biosynthesized through farnesylation of orsellinic acid, but the details have not been established. In this study, we present all of the reactions and responsible genes for AF and AC biosyntheses inA. egyptiacum, identified by heterologous expression, in vitro reconstruction, and gene deletion experiments with the aid of a genome-wide differential expression analysis. Both pathways share the common precursor, ilicicolin A epoxide, which is processed by the membrane-bound terpene cyclase (TPC) AscF in AC biosynthesis. AF biosynthesis branches from the precursor by hydroxylation at C-16 by the P450 monooxygenase AscH, followed by cyclization by a membrane-bound TPC AscI. All genes required for AC biosynthesis (ascABCDEFG) and a transcriptional factor (ascR) form a functional gene cluster, whereas those involved in the late steps of AF biosynthesis (ascHIJ) are present in another distantly located cluster. AF is therefore a rare example of fungal secondary metabolites requiring multilocus biosynthetic clusters, which are likely to be controlled by the single regulator, AscR. Finally, we achieved the selective production of AF inA. egyptiacumby genetically blocking the AC biosynthetic pathway; further manipulation of the strain will lead to the cost-effective mass production required for the clinical use of AF.

Funder

MEXT, Japan

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3